Знакомство со временем в школе

Величины, понятие, методика преподавания - Конспект

знакомство со временем в школе

Первые представления о времени, об измерении времени учащиеся получают еще до школы. Уже в детском саду дети знают названия. Знакомство с понятиями длинный – короткий, широкий – узкий, высокий – низкий МЕТОДИКА ЗНАКОМСТВА СО ВРЕМЕНЕМ. Ознакомление учащихся с единицами времени и их соотношением рекомендации по ФК для учащихся коррекционной школы вида · Билет №

Система упражнений, направленных на выработку навыков, предусматривает их применение в разнообразных условиях. Тренировочные упражнения рационально распределены во времени. Значительно усилено внимание к практическим упражнениям с раздаточным материалом, к использованию схематических рисунков, а также предусмотрена вариативность в приемах выполнения действий, в решении задач.

На первых порах обучения важное значение имеет игровая деятельность детей на уроках математики. В программе приведен примерный перечень дидактических игр и игровых упражнений. При формировании представлений о величинах длине, массе, площади и др. В ходе выполнения таких заданий учащиеся подводятся к самостоятельному выводу о необходимости введения единых общепринятых единиц измерения каждой величины.

Магия времени

Дети знакомятся с измерительными инструментами. Организуется работа по формированию временных представлений: При изучении чисел от 11 до 20 полученные знания закрепляются, вводится новая единица измерения - дециметр.

Устанавливаются соотношения между. Кроме того, происходит знакомство с часом, дети учатся определять время по часам с точностью до часа. Изучение массы и объема начинается с введения единиц измерения - килограмм и литр.

Полученные в 1 классе знания закрепляются и уточняются на новом числовом множестве - числа от 1 до Вводится понятие - длина ломаной. Рассматриваются единицы измерения и соотношения между ними: Кроме того, учащиеся знакомятся с периметром многоугольника. Единица длины - метр.

Соотношения метра и миллиметра, сантиметра, дециметра. Единица массы - грамм. Соотношение грамма и килограмма. Ознакомление с единицами измерения величин и их соотношениями проводится в течение всех лет обучения в начальной школе. Одной из основных задач четвертого года обучения становится пополнение и обобщение этих знаний.

Необходимо рассмотреть соотношение между единицами каждой величины. Эти соотношения усваиваются учащимися при выполнении различных заданий и разучивании соответствующих таблиц. Программой предусмотрено также изучение приемов сложения и вычитания значений одной и той же величины, а также умножение и деление значений величины на однозначное число.

знакомство со временем в школе

Величина - неопределяемое понятие. Длина отрезка, площадь фигуры, масса тела, время - положительные скалярные величины. Положительной скалярной величине можно поставить в соответствие количественную характеристику - численное значение меру при выбранной единице измерения. Отыскать численное значение величины возможно в результате ее измерения. В результате такого отображения каждой положительной скалярной величине ставится в соответствие единственное положительное действительное число, называемое численным значением величины или мерой.

В начальных классах изучаются такие величины как цена, стоимость, масса, емкость, длина, время, скорость площадь и др. Эти величины включены в начальный курс с целью обеспечения практической надобности в измерении длины предметов, площади, массы; для лучшего усвоения нумерации и арифметических действий; для развития пространственных представлений.

Большое внимание уделяется решению задач с пропорциональными величинами. Соотношение единиц не равно 10n. Сутки - время обращения Земли вокруг своей оси. Год - время обращения Земли вокруг Солнца. Первые представления о времени, о временных промежутках, об измерении времени учащиеся получают еще до школы. Уже в детском саду дети знают название дней недели, месяцев в году, имеют представление о смене дня и ночи, некоторые умеют даже определять время по часам.

Однако временная последовательность событий что было раньше, что позжепонятие о продолжительности событий усваивается детьми с большим трудом. Однако, учитывая сложность процесса формирования временных представлений, необходимо с I класса вести работу в этом направлении. При этом можно выделить следующие основные требования к знаниям, умениям и навыкам учащихся: К концу 4 класса учащиеся должны знать: Первые представления о времени дети получают в дошкольный период.

Смена дня и ночи, смена времен года, повторяемость режимных моментов в жизни ребенка - все это формирует временные представления.

Однако как временная последовательность событий что было раньше, что позжетак и особенно понятие о продолжительности событий усваиваются детьми с большим трудом. Временные представления у первоклассников формируются, как и у дошкольников, прежде всего в процессе их практической учебной деятельности: Программа предусматривает в 1 классе знакомство детей с названиями дней недели, их последовательностью. В качестве наглядного пособия используется отрывной календарь или модель настольного календаря.

Самые первые уроки в 1 классе посвящены закреплению полученных в дошкольном возрасте знаний, уточняются понятия: Начиная с 1 класса необходимо приступить к сравнению знакомых, часто встречающихся в опыте детей временных промежутков. Например, что длится дольше: Такие задания способствуют развитию чувства времени.

В процессе решения задач, связанных с понятием разности, дети приступают к сравнению возраста людей и постепенно овладевают важными понятиями: Ввиду большой практической потребности полезно ознакомить первоклассников с тем, как по часам определяется время, при этом достаточно, если дети научатся пока вести отсчет времени с точностью до часа. Знакомство с единицами времени способствуют уточнению временных представлений детей.

Знание количественных отношений единиц измерения помогает сравнивать и оценивать по продолжительности промежутки времени, выраженные в тех или иных единицах времени. Такие единицы времени, как месяц и год, сутки, час и минута изучаются во 2 классе, а век и секунда - в 3 и 4 классах. Необходимо формировать у детей конкретные представления о каждой единице времени, добиваться усвоения их соотношений, научить пользоваться календарем и часами и с их помощью решать несложные задачи на вычисление продолжительности событий, если известны его начало и конец, а также задачи, обратные данной то есть на установление начала и конца события.

При знакомстве с часами обращается внимание на 12 и 24 - часовое счисление времени суток. Дети узнают, что началом суток является полночь 0 ччто счет часов в течение суток идет от начала суток, поэтому после полудня 12 ч каждый час имеет другой порядковый номер 1 час дня - это 13 ч2 часа дня - 14 ч и. Усвоению этой системы отсчета помогает изображение ее с помощью отрезка рис. Она проходит от одной большой чёрточки до другой за 1 час. Большая стрелка - минутная.

Она проходит от одной маленькой чёрточки до другой за 1 минуту. Чтобы подготовить детей к восприятию единиц времени, необходимо во 2 классе продолжать систематическую работу с календарем, начатую в 1 классе.

Подводя итог и обобщая наблюдения, полезно обращать внимание детей на последовательность месяцев и количество дней в каждом месяце. При записи даты в тетрадях следует также почаще задавать вопросы на выяснение последовательности месяцев Сегодня 1 октября.

А предыдущий месяц как назывался? Какой следующий месяц и. Знакомя детей с месяцем и годом, учитель использует табель-календарь. Работая с календарем, учащиеся выписывают названия месяцев по порядку и количество дней в каждом месяце, выделяют одинаковые по продолжительности месяцы, отмечают самый короткий, определяют порядковый номер месяца, устанавливают день недели, если известно число и месяц, решают задачи на нахождение продолжительности событий.

Наибольшую трудность в практическом отношении представляет вопрос об определении промежутка времени между двумя событиями в течение недели, месяца, года: Определение промежутка времени в течение одного месяца: Сколько времени длились посевные работы? Сколько времени прошло от начала запуска первого корабля до начала второго? Понятие о сутках раскрывается через близкие детям понятия о частях суток - утро, день, вечер, ночь.

Измерение - заключается в сравнении данной величины с некоторой величиной того же рода, принятой за единицу. Величины, которые вполне определяются одним численным значением, называются скалярными величинами. Такими, к примеру, являются длина, площадь, объём, масса и. Кроме скалярных величин, в математике рассматривают ещё векторные величины. Для определения векторной величины необходимо указать не только её численное значение, но и направление.

Векторными величинами являются сила, ускорение, напряжённость электрического поля и. В начальной школе рассматриваются только скалярные величины, причём такие, численные значения которых положительны, то есть положительные скалярные величины. Измерение величин позволяет свести сравнение их к сравнению чисел Длина отрезка и её измерение. Длиной отрезка называется положительная величина, определённая для каждого отрезка так что: Рассмотрим процесс измерения длин отрезков.

Из множества отрезков выбирают какой-нибудь отрезок e и принимают его за единицу длины. На отрезке а от одного из его концов откладывают последовательно отрезки равные e, до тех пор, пока это.

Если отрезки, равные e отложились n раз и конец последнего совпал с концом отрезка e, то говорят, что значение длины отрезка а есть натуральное число n, и пишут: Если представить этот процесс бесконечно продолженным, то получим, что значение длины отрезка а есть бесконечная десятичная дробь. Итак, при выбранной единице, длина любого отрезка выражается действительным числом.

Верно и обратное; если дано положительное действительное число n, nnПонятие о площади фигуры имеет любой человек: При этом мы понимаем, что если земельные участки одинаковы, то площади их равны; что у большего участка площадь больше; что площадь квартиры слагается из площади комнат и площади других её помещений.

Это обыденное представление о площади используется при её определении в геометрии, где говорят о площади фигуры. Но геометрические фигуры устроены по-разному, и поэтому когда говорят о площади, выделяют особый класс фигур. Например, рассматривают площади многоугольников и других ограниченных выпуклых фигур, или площадь круга, или площадь поверхности тел вращения и так далее.

В начальном курсе математики рассматриваются только площади многоугольников и ограниченных выпуклых плоских фигур. Такая фигура может быть составлена из. Например, фигура F, рис. Говоря, что фигура составлена состоит из фигур F1, F2,…,Fn, имеют в виду, что она является их объединением и любые две данные фигуры не имеют общих внутренних точек. Площадью фигуры называется неотрицательная величина, определённая для каждой фигуры так, что: Если сравнить данное определение с определением длины отрезка, то увидим, что площадь характеризуется теми же свойствами, что и длина, но заданы они на разных множествах: Площадь фигуры F обозначать S F.

Чтобы измерить площадь фигуры, нужно иметь единицу площади. Как правило, за единицу площади принимают площадь квадрата со стороной, равной единичному отрезку e, то есть отрезку, выбранному в качестве единицы длины.

Площадь квадрата со стороной e обозначают e. Например, если длина стороны единичного квадрата m, то его площадь m. Измерение площади состоит в сравнении площади данной фигуры с площадью единичного квадрата e. Число x называют численным значением площади при выбранной единице площади. Масса и её измерение. Масса - одна из основных физических величин. Понятие массы тела тесно связано с понятием веса-силы, с которой тело притягивается Землёй.

Поэтому вес тела зависит не только от самого тела. Например, он различен на разных широтах: Однако при своей изменчивости вес обладает особенностью: При измерении веса тела путём сравнения его с весом другого выявляется новое свойство тел, которое называется массой. Представим, что на одну из чашек рычажных весов положили какое-нибудь тело, а на другую чашку положили второе тело b.

При этом возможны случаи: В этом случае говорят, что весы находятся в равновесии, а тела а и b имеют равные массы. В этом случае говорят, что масса тела а больше массы тела b. В этом случае говорят, что масса тела а меньше тела b. С математической точки зрения масса - это такая положительная величина, которая обладает свойствами: Если сравнить данное определение с определениями длины и площади, то увидим, что масса характеризуется теми же свойствами, что длина и площадь, но задана на множестве физических тел.

Измерение массы производится с помощью весов. Происходит это следующим образом. Выбирают тело e, масса которого принимается за единицу. Предполагается, что можно взять и доли этой массы. Например, если за единицу массы взят килограмм, то в процессе измерения можно использовать такую его долю, как грамм: На одну чашку весов кладут тело, массу тела кого того измеряют, а на другую — тела, выбранные в качестве единицы массы, то есть гири.

Этих гирь должно быть столько, чтобы они уравновесили первую чашку весов. В результате взвешивания получается численное значение массы данного тела при выбранной единице массы. Например, если масса тела равна 5 кг г, то число следует рассматривать как значение массы данного тела при единице массы — грамм. Для численных значений массы справедливы все утверждения, сформулированные для длины, то есть сравнение масс, действия над ними сводятся к сравнению и действиям над численными значениями масс при одной и той же единице массы.

Основная единица массы - килограмм. Из этой основной единицы образуются другие единицы массы: Промежутки времени и их измерение. Понятие времени более сложное, чем понятие длины и массы. В обыденной жизни время - это то, что отделяет одно событие от другого. В математике и физике время рассматривают как скалярную величину, потому что промежутки времени обладают свойствами, похожими на свойства длины, площади, массы.

Промежутки времени можно сравнивать. Например, на один и тот же путь пешеход затратит больше времени, чем велосипедист. Промежутки времени можно складывать. Так, лекция в институте длится столько же времени, сколько два урока в школе. Но процесс измерения времени отличается от измерения длины, площади или массы.

Для измерения длины можно многократно использовать линейку, перемещая её с точки на точку. Промежуток времени, принятый за единицу, может быть использован лишь один. Поэтому единицей времени должен быть регулярно повторяющийся процесс. Такой единицей в Международной системе единиц названа секунда. Наряду с секундой используются и другие единицы времени: Такие единицы, как год и сутки, были взяты из природы, а час, минута, секунда придуманы человеком.

Год - это время обращения Земли вокруг Солнца.

знакомство со временем в школе

Сутки - это время обращения Земли вокруг своей оси. Год состоит приблизительно из суток.

знакомство со временем в школе

Но год жизни людей складывается из целого числа суток. Поэтому вместо того, чтобы к каждому году прибавлять 6 часов, прибавляют целые сутки к каждому четвёртому году. Этот год состоит из дней и называется високосным. В Древней Руси неделя называлась седмицей, а воскресенье - днём недельным когда нет дел или просто неделей, то есть днём отдыха. Названия следующих пяти дней недели указывают, сколько дней прошло после воскресенья. Понедельник - сразу после неделя, вторник - второй день, среда - середина, четвёртые и пятые сутки соответственно четверг и пятница, суббота - конец дел.

Месяц не очень определённая единица времени, он может состоять из тридцати одного дня, из тридцати и двадцати восьми, двадцати девяти в високосные годы дней. Но существует эта единица времени с древних времён и связана с движением Луны вокруг Земли. Один оборот вокруг Земли Луна делает примерно за 29,5 суток, и за год она совершает примерно 12 оборотов.

Эти данные послужили основой для создания древних календарей, а результатом их многовекового усовершенствования является тот календарь, которым мы пользуемся и. Так как Луна совершает 12 оборотов вокруг Земли, люди стали считать полнее число оборотов то есть 22 за год, то есть год — 12 месяцев. Современное деление суток на 24 часа также восходит к глубокой древности, оно было введено в Древнем Египте. Минута и секунда появились в Древнем Вавилоне, а в том, что в часе 60 минут, а в минуте 60 секунд, сказывается влияние шестидесятеричной системы счисления, изобретённой вавилонскими учёными.

Объём и его измерение.

  • Изучение темы "Время и его измерение" в начальной школе
  • Выступление для родителей будущих первоклассников. Знакомство с УМК "Школа России"
  • Знакомство со временем. Задания.

Понятие объёма определяется так же, как понятие площади. Но при рассмотрение понятия площадь, мы рассматривали многоугольные фигуры, а при рассмотрении понятия объём мы будем рассматривать многогранные Фигуры. Объёмом фигуры называется неотрицательная величина, определённая для каждой Фигуры так, что: Условимся объём фигуры F обозначать V F.

Чтобы измерить объем фигуры, нужно иметь единицу объёма. Как правило, за единицу объёма принимают объём куба с гранью, равной единичному отрезку e, то есть отрезку, выбранному в качестве единицы длины.

Если измерение площади сводилось к сравнению площади данной фигуры с площадью единичного квадрата eто, аналогично, измерение объёма данной фигуры состоит в сравнении его с объёмом единичного куба е3 рис. Результатом этого сравнения является такое число x. Число х называют численным значением объёма при выбранной единице объёма. Современные подходы к изучению величин в начальном курсе математики. В начальных классах рассматриваются такие величины, как: Учащиеся должны получить конкретные представления об этих величинах, ознакомиться с единицами их измерения, овладеть умениями измерять величины, научиться выражать результаты измерений в различных единицах, выполнять различные действия над.

Величины рассматриваются в тесной связи с изучением натуральных чисел и дробей; обучение измерении связывается с изучением счёта; измерительные и графические действия над величинами являются наглядными средствами и используются при решении задач.

При формировании представлений о каждой из названных величин целесообразно ориентироваться на определённые этапы, в которых нашли отражение: Истомина, преподаватель математики и автор одной из альтернативных программ, выделила 8 этапов изучения величин: Перевод однородных величин, выраженных в единицах одного наименования, в величины, выраженные в единицах двух наименований, и наоборот.

В программах развивающего обучения предусмотрено рассмотрение основных величин, их свойств и отношений между ними с тем, чтобы показать, что числа, их свойства и действия, производимые над ними, выступают в качестве частных случаев уже известных общих закономерностей величин.

Структура данного курса математики определяется рассмотрением последовательности понятий: Методика изучения длины и её измерения. В традиционной начальной школе изучение величин начинается с длины предметов. Первые представления о длине как о свойстве предметов у детей возникает задолго до школы. С первых дней обучения в школе ставится задача уточнить пространственные понятия детей. Сначала учащиеся сравнивают предметы по длине не измеряя. Например, учащимся предлагается рассмотреть рисунки и ответить на вопросы: Затем предлагается сравнить два предмета разного цвета и разные по размеру по длине практически - наложением.

Через эти два упражнения дети подводятся к пониманию длины как свойства, проявляющегося в сравнении, то есть: После рассмотрения длин предметов переходят к изучению длины отрезка.

Формирование понятия времени. Обучение измерению времени

Здесь длина выступает как свойство отрезка. На следующем этапе происходит знакомство с первой единицей измерения отрезков. Из множества отрезков выбирают отрезок, который принимают за единицу. Дети узнают его название и приступают к измерению с помощью этой единицы.

знакомство со временем в школе

Чтобы дети получили наглядное представление о сантиметре, следует выполнить ряд упражнений. Например, полезно, чтобы они сами изготовили модель сантиметра; начертили отрезок длиной 1см в тетради. Нашли, что ширина мизинца примерно равна 1 см. Далее учащихся знакомят с измерительным прибором и измерением отрезков с помощью прибора. Чтобы дети ясно поняли процесс измерения и что показывают числа, полученные при измерении. Целесообразно постепенно переходить от простейшего приёма укладывания модели сантиметра и их подсчета к более трудному - отмериванию.

Для того, чтобы учащиеся лучше осознали взаимосвязь между числом и величиной, то есть поняли, что в результате измерения они получают число, которое можно складывать и вычитать, полезно в качестве наглядного пособия для сложения и вычитания использовать ту же линейку.

Например, ученикам даётся полоска; требуется с помощью линейки определить её длину. Линейка прикладывается так, чтобы 0 совпал с началом полоски, а её конец совпал с цифрой 3 если длина полоски равна 3 см.

Затем учитель предлагает вопросы: Тот, кто затрудняется, прибегает к практическому действию, в процессе которого закрепляет вычислительные навыки и приобретает умение пользоваться линейкой для вычислений.

Папка дошкольника Знакомство со временем.

Возможны аналогичные упражнения с линейкой и на обратное действие - вычитание. Для этого ученики сначала определяют длину предложенной полоски, например, 4см, а затем учитель спрашивает: Для формирования измерительных навыков включается система разнообразных упражнений. Это измерение и черчение отрезков; сравнение отрезков, чтобы ответить на вопрос: В процессе этих упражнений у учащихся формируется понятие длины как числа сантиметров, которые укладываются в данном отрезке.

Позднее, при изучении нумерации чисел в пределахвводятся новые единицы измерения - дециметр, а затем метр. Работа проходит в таком же плане, как и при знакомстве с сантиметром. Затем устанавливают отношения между единицами измерения. С этого времени приступают к сравнению длин на основе сравнения соответствующих отрезков. Далее рассматривают преобразования величин: Введение миллиметра обосновывается необходимостью измерять отрезки меньшие 1 сантиметра. При знакомстве с километром полезно провести практические тяготы на местности, чтобы сформировать представление об этой единице измерения.

В классе учащиеся составляют и заучивают таблицу всех изученных единиц длины и их отношений. Начиная со 2 класса дети в процессе решения задач знакомятся с нахождением длины косвенным путём.

Ознакомление учащихся с единицами времени и их соотношением

Например, зная длину данного класса и количество классов на втором этаже, вычисляет длину школы; зная высоту комнат и количество этажей в доме, можно приблизительно вычислить высоту дома и тому подобное. Работу над этой темой можно продолжить на внеклассных занятиях, например, рассмотреть старинные русские меры: Познакомить учащихся с некоторыми сведениями из истории развития системы мер. Методика изучения площади и её измерение. В методике работы над площадью фигуры имеется много общего с работой над длиной отрезка, то есть работа проводится почти аналогично.

Когда же фигуры при наложении совпадают, то говорят, что их площади равны или совпадают. Этот вывод ученики могут сделать самостоятельно. Но возможен и такой случай, когда одна из фигур не помещается полностью в.

Например, два прямоугольника, один из которых квадрат Рис. Ученики совместно с учителем делают вывод, что для сравнения площадей, так же как и для сравнения длин можно воспользоваться меркой. Это может быть квадрат M или треугольник М. Учащиеся укладывают в прямоугольники различные мерки и подсчитывают их число в каждом. Так пользуясь меркой M1, они получают 20М1 и 10МГ.

Измерение меркой М2 даёт 40М2 и 36М2.

знакомство со временем в школе

Измеряя прямоугольники меркой М4, получаем 40М4 и 36М4.